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We study electrodynamics in Einstein-Cartan space-time, that is, in space-time 
with torsion, and show an analogy with the Chern-Simons gauge-invariant 
massive electrodynamics. In our case, however, there is no arbitrary parameter, 
the torsion Q playing the role of the Chern-Simons parameter ~c. This leads to 
bounds on the photon mass, charge, and torsion coupling. 

1. I N T R O D U C T I O N  

Whenever  a pho ton  mass is invoked in electrodynamics, as has been 
done by several authors  at different times (Einstein, 1917; Bass and 
Schr6dinger, 1955; Garcia  de Andrade,  1990a; Chow, 1981; Barnes and 
Sergle, 1975), gauge invariance is necessarily broken,  as is well known. So 
whenever limits are put on a pho ton  mass in different contexts (Chow, 
1981; Barnes and Sergle, 1975), it is unders tood that  gauge invariance and 
conformal  invariance of  Maxwell 's equations are broken. As regards the 
conformal  invariance of Maxwell 's equations, once we introduce a curved 
space-time the propagat ion  of a pho ton  is no longer conformally invariant 
(i,e., we have the bending of light). Only  in the special case of a 
conformally flat space are Maxwell 's equations conformally invariant. In 
general in a curved space-time, conformal  invariance of Maxwell 's equa- 
tions is broken,  so that  the curvature term can be interpreted as a mass 
term. For  instance, general covariance would modify the wave equat ion as 

D A ~  + R Q A V = O  (1) 
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However, it must be noted that this is not unique. One could write down 
as well []A ~ + R~vR~VA v = 0 or even D A  ~ + R ~ w p R ~ A  ~ = 0, etc. All these 
expressions would be generally covariant. The photon mass would be 

2 R .  related or constrained by the overall curvature of space as rn 
The above considerations were for a curved space with a symmetrical 

connection. For  a curved space with a nonsymmetrical connection it is also 
well known that minimal coupling does not preserve gauge invariance 
(Hehl et al., 1976; Hayashi and Sasaki, 1978). Suggested solutions involve 
invoking additional constraints ori torsion or introduce other coupling 
prescriptions (Novello, 1976). 

Classically one can of course retain gauge invariance by assuming that 
photons do not couple to the background torsion field. This complete 
decoupling could of course be valid only classically. The quantum 
description of the electromagnetic field would imply that a photon can for 
a small fraction of time disintegrate into a virtual fermion pair and since 
massive fermions can minimally couple to torsion, this pair can interact 
with torsionic background, inducing indirectly a photon-torsion coupling 
which can preserve the gauge invariance of the theory. 

The Maxwell equations modified in this manner in the presence of 
torsion can be written as (de Sabbata and Gasperini, 1980a, b; 1981a-c) 

c~kF 'k = 4~J i+  (2c~/3rc)17ikZJFkzQj 
(2) 

a uFjk~ = 0 

(e=e2/hc) .  These equations are compatible with current conservation, 
C3i Ji = 0 (in the case of constant torsion, i.e., ~?~Qj = 0), but are ful ly gauge 
invariant. 

In this modification of Maxwell's equation in the presence of back- 
ground torsion we effectively have an "extra" contribution to the source 
term on the r.h.s, of the first of equations (2), something like a correction 
to the current density J (  Also we note that the parameter Q j, which has 
the dimensionality of inverse length, controls the torsion modification. 
Q can be defined through the spin density ~r of the background matter as 
(de Sabbata and Gasperini, 1980c) 

Q = 4rcGa/c 3 (3) 

Q as defined in equation (3) has the dimensions of inverse length. This 
additional term in equation (2) can thus be pictured as providing a 
wavelength cutoff at large distances greater than Q i for the gauge- 
invariant electric and magnetic fields. In the static case, we have a 
correction to the charge density. 
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We shall now point out some analogies between this additional gauge- 
invariant term induced in the electrodynamic equations by torsion and the 
Chern-Simons modification of electrodynamics. 

2. GAUGE-INVARIANT MASSIVE ELECTRODYNAMICS 

The gauge-invariant modification of electrodynamics introduced 
by a torsion background as discussed above has a parallel with 
the Chern-Simons modification of electrodynamics, which is currently 
receiving much attention (Jackiw and So-Young Pi, 1990). With the 
Chern Simons term we have the modified Maxwell equation given as 

~?,F ~v + (~c/2) eV~F~/~ = 4~J v (4) 

where the parameter ~ has inverse length dimensionality and controls the 
additional Chern-Simons term. This additional term gives rise again to a 
massive yet gauge-invariant electrodynamics. 

This is the usual interpretation of the Chern-Simons term, which is a 
coupling between field and potential AeF ~, analogous to the coupling 
between torsion and field, i.e., here Q plays the role of the Chern-Simons 
parameter to. 

The Lagrangian density for Chern-Simons electrodynamics involves 
coupling between field F u" and potential A, thus 

= -(1/4)FpvF~"+ (K/4)e'V2F, vA~ (5) 

The resulting field equations given by equation (4) are invariant under 

A, ~ A~ + (1/c)ct~.A (6) 

The torsion-modified part of the electrodynamic action is given by 
(de Sabbata and Gasperini. 1981a) 

L = (~/16zc) f d4x (-g)l/2eiJI'AiFjk Q (7) 

which is also invariant under the gauge transformation given by 
equation (6). 

Q is defined in terms of the background spin density through equa- 
tion (3) and being an inverse length is formally similar to the inverse-length 
Chern Simons parameter K (de Sabbata and Gasperini, 1981d). Notice 
also the field-potential coupling in equation (7). The fact that equations (5) 
and (7) correspond to a fully gauge-invariant theory with massive photons 
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can be seen by rewriting, for instance, equation (4) using the dual fields 
given by 

*F~ = (1/2)G~/~F ~p 

Thus equation (4) becomes 

(8) 

(g"~ + (1/K)e'wa~) *Fv = 0 (9) 

which we can write also in the form 

(~ +~2) *C~=O (10) 

where the photon mass is related to ~ as 

(m~ c/h)2 = ~c2 (11 ) 

In the torsion case, rn~ is related to Q2, with Q given by equation (3). 
So essentially what we have is a case of massive yet gauge-invariant 

electrodynamics, "massive" in the sense that we have a length parameter 
Q 1 entering as a cutoff (determined by torsion) which can be considered 
as equivalent to a mass term if one associates it with the corresponding 
Compton wavelength, thus rn~ oc Q. For  vanishing torsion Q = 0 ,  i.e., 
Q-1 = c~, we recover the usual Maxwell electrodynamics with infinite field 
range and zero photon mass. We thus have the important consequence that 
we have no infrared divergence in electrodynamics, as we have a 
wavelength cutoff at Q-1. For instance, on a cosmic scale Q arising from 
background torsion due to the spin density of matter in the universe has 
a value of Q ~,RH1/~,  giving the effective cutoff wavelength on a cosmic 
scale as g R H e  g 10 26 c m ,  R H being the Hubble radius. This corresponds to 
an effective photon mass (from h/mTc = RHe ) of m 7 ~ 10 -62 g. This mass 
for the photon is only an effective mass which is induced by the back- 
ground cosmological torsion. It is not something intrinsic to the photon 
mass (like the W-boson mass, for example). This is only an effective mass 
induced by its propagation through the background spin density, so that 
gauge invariance is preserved. Moreover, the photon is not a gravita- 
tionally bound system (either by Newtonian or strong gravity). In this 
sense it is remarkable to talk of an effective photon mass on a cosmic scale. 

The additional term in equation (4) would give rise to a modified 
Gauss law as 

V E -  ~B = ep(r, t) (12) 

where p(r, t) is the charge number density. This has the consequence that 
any field configuration with charge q = e ~ dr p(r, t) also carries a magnetic 
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flux �9 = ~ dr B(r, t). As remarked earlier, the additional term, which is still 
gauge invariant, can be regarded as contributing an "extra" charge which 
would give rise to a background magnetic field (in turn related to Q). 
For a discussion of the torsion-induced primordial magnetic field see 
de Sabbata and Sivaram (1988). 

The main effect of torsion modification consists of introducing a 
gauge-invariant infrared cutoff Q-1 playing the role of a finite range 
analogous to the usual interpretation of Chern-Simons electrodynamics as 
a massive gauge-invariant theory with the range entering through ~c 1. We 
have also the corresponding divergence of the axial current as 

8 "j~ 5 = e2e.v.~ ~ F"VF ~" (13) 

For the torsion case, where the spin-torsion coupling arises from the axial- 
vector part of the torsion tensor (de Sabbata and Gasperini, 1980a; de 
Sabbata and Sivaram, 1990a) written as Q =c3u~b, we have analogously 
(here we consider propagating torsion, since we are considering field 
theory) 

8Q oc [~(b = (G~/cS)eiJktFuFk, (14) 

The approach can be easily extended to the non-Abelian case, the corre- 
sponding gauge groups being SU(2) isospin for the Chern-Simons case 
and SL(2 ,  C) for the torsion case (de Sabbata and Sivaram, 1991). In 
this respect the Chern-Simons approach is a particular case of torsion 
development. 

It is also interesting to note that in the Chern-Simons case, ~:-1 (i.e., 
the length parameter) is quantized in units of g2/mc2, where g is the gauge 
coupling, i.e., 

tr ' = (g2/mc 2) n (15) 

where n is an integer. Similarly in the torsion case, if we associate torsion 
with defects in space-time topology (de Sabbata and Sivaram, 1991), Q-~ 
is quantized as 

Q - 1 = n ( h G / c 3 ) m  (16) 

or more generally ~ Q dA = n(hG/c3)  1/2, where the integral is over a surface. 

3. SOME CONSEQUENCES OF A MASSIVE PHOTON 

A recent paper by Vigier et al. (1991) discusses some cosmological 
consequences of a nonzero photon mass. However, the photon mass in that 
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paper is discussed in the sense of the usual Proca theory, which is non- 
gauge-invariant, unlike what we have here. 

In our case we should also point out the analogy with the London 
equation, which implies a modification of the electrodynamic equations 
inside a superconductor. For the London equation also we have a length 
parameter which gives the penetration depth which is the analog of Q-1 
here. For our case we have, for instance, the torsion-modified equation: 

VZH = (na/3u)H. Q (17) 

where the formal analogy with London's equation would again suggest 
Q-1 as the penetration depth, the photon again acquiring an effective 
mass, the important difference being that the London equation violates 
phase invariance, whereas equation (17) does not. 

Since torsion is also connected with magnetism (de Sabbata and 
Gasperini, 1980d; de Sabbata and Sivaram, 1988, 1991), we can invoke the 
critical magnetic field given by 

Bcrit = (mZc3/qh) (18) 

where q is an extra charge on the field as given by the additional term. This 
would also be consistent with the "superfluid" background approach of 
Vigier et al. (1991). 

Using for Bcrit the primordial field of ~ 10-TG and for rn 7 ~ 10 62g 
as estimated from the background torsion, we have a constraint on the 
extra charge as 

q ~  10-48e (19) 

where e is the electric charge. This is much more stringent than the limits 
given by the isotropy of the cosmic ray background (Sivaram, 1989), which 
is q ~ 10-32e. Thus this limit on the photon mass fixed by the background 
torsion also constrains the photon charge to be < 10 48e. 

The well-known dispersion relation for massive photons, i.e., an effec- 
tive refraction index n -  1 -  (m~c4/2h2f2), would for m , ~  10-62 g imply 
(1--v2/c 2) < 10 -26 f2 and anisotropy changes of 6vT/c< 10 -29, which are 
virtually unobservable. 

Unlike the case of neutrinos which couple directly to torsion, photons 
do not couple directly to a torsion background (de Sabbata and Gasperini, 
1980a). In the case of neutrinos we thus have oscillations induced by 
torsion even for massless neutrinos (de Sabbata and Gasperini, 1981e). We 
also have a magnetic moment for massless neutrinos induced by torsion 
(de Sabbata and Sivaram, 1990b). 
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It is very interesting to note that the above constraints on the torsion- 
induced photon mass and charge also give a photon magnetic moment of 

I~,e = qh/m,,.c ~ 10-2~ (20) 

(#r  magneton). This, although extremely small, could cause 
polarization changes in extremely strong magnetic fields as in neutron 
stars. If we have an effectively massive photon state propagating in a tor- 
sion background, we can have photon oscillations from one state of 
polarization to another. The oscillation distance would be given by 
[-analogously to the case of neutrinos considered in de Sabbata and 
Sivaram (1990b) ] 

l~ = E~/Am~ C 3 (21) 

where E>. is the photon energy. The probability of oscillation on a propaga- 
tion distance I is given by exp(-1,e/l ). For microwave background photons, 
ETa-10-4eV. The lack of asymmetries in the microwave background 
would imply e x p ( -  l~/l)~- 10-5. If we take l,, ~ RH to avoid inconsistencies, 
then equation (21) implies Am21< 10-SZg, more stringent than current 
experimental limits. 

It would also be interesting to consider torsion effects on electro- 
dynamics in the vicinity of a neutron star. While discussing torsion-modified 
massive electrodynamics some authors have introduced an arbitrary direct 
torsion-photon coupling 2 which in dimensionless form can be related to 
Q through m~. as (Garcia de Andrade, 1990b): 

(m~c/h ) 2 ~ 2Q 2 (22) 

We can put a constraint on 2 in considering torsion effects in neutron stars. 
To calculate from equation (3), we need to know the spin density. If all the 
neutron spins are aligned (de Sabbata and Gasperini, 1980e), i.e., N ~  1057 
neutrons in a 1-MQ neutron star, we have a total magnetic moment 
/~NxN, where #~v=(eh /2mNc) l .93~eh /mNc is the neutron magnetic 
moment. Thus this would give a total magnetic moment (if all the spins are 
aligned) of ~N].~ u ~ -  2 x 1034. The corresponding magnetic field is (denoting 
by V the volume of the neutron star) ,,~NI~N/V~ 1015 G. Since the actual 
magnetic field of a neutron star is only ~ 1012 G, this implies that perhaps 
only one in 103 spins is aligned, so that Nh/lO 3 is the effective contribution 
of the total spin to the torsion photon coupling. This can be used for the 
spin density to calculate Q in equation(3). Using for my the value 
m~,~10-62g as given by the cosmological argument, we have the 
constraint on 2 from (22) as 

2 4  10 -24 (23) 



1530 De Sabbata e t  al. 

This  pu ts  the l imi t  o n  a n y  direct p h o t o n - t o r s i o n  c o u p l i n g  which  violates 

gauge invar iances .  So this is a c o n s t r a i n t  o n  any  gauge violating p h o t o n -  
to r s ion  coupl ing .  

S imi la r  l imi ts  c an  be p u t  on  direct  t o r s ion  coup l ings  to mass ive  vec tor  
m e s o n s  (such as p -mesons ) .  O n e  c an  also cons ide r  mass ive  v e c t o r - p h o t o n  
osc i l la t ions  such as the  f - g  osc i l la t ions  (de S a b b a t a  a n d  Gaspe r in i ,  1986). 
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